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challenge state-of-the-art planning and control 
algorithms. �e work done by the team enlarges the 
operational design domain (ODD) of these algorithms, 
resulting in improved robustness to the extreme 
conditions on the racetrack. 

Figure 1 - DevBot 2.0 at the Monteblanco racetrack

To bene�t from these developments, the Chair of 
Automotive Technology and the Chair of Automatic 
Control of the TUM decided to take part in the Roborace 
competition for autonomous racing to benchmark their 
research on a full-size racing vehicle [1], called ‘DevBot 
2.0’. �e vehicle has been developed by Roborace based 
upon a standard Le Mans Prototype (LMP) chassis and is 
driven by two electric motors on the rear axle. �e main 
idea behind the competition is to equip teams with an 
identical car hardware platform so that the performance 
only depends on the algorithm design and the team 
performance. �e autonomous driving so�ware stack 
runs on an NVIDIA Drive PX2 and a Speedgoat Mobile 
real-time target machine. During the Season Alpha in 
2019, the teams carried out di�erent tasks, such as 
minimizing lap time, racing multiple vehicles on a 
circuit in classic race formats and optimizing on-track 
localization and driving precision. �is diversity of 
challenges required the TUM team to develop a holistic 
so�ware architecture. �is article will focus on the 
motion control and the sensor fusion parts of the 
so�ware stack. �e reader is referred to [3] and [4] for 
further details on the remaining so�ware modules and 
how they are interconnected with the algorithms 
presented. 

Abstract
�is whitepaper describes the use of Speedgoat hardware 
and the related Simulink toolchain for the Roborace 
research project at the Technical University of Munich 
(TUM). �e team is developing an autonomous driving 
so�ware stack capable of operating a racing vehicle close 
to its physical limits. Speedgoat real-time solutions are 
used within the car (a real-time rapid prototyping 
controller unit) and to set up a hardware-in-the-loop 
(HIL) simulation. In the following whitepaper, we 
provide an overview of the motion control and sensor 
fusion algorithms and present open source packages for 
these functions ready to be used with o�-the-shelf 
Speedgoat hardware. 

Introduction
Autonomous driving is a topic of signi�cant interest to 
industry and academia peers. Applying theoretical 
�ndings to research-level prototypes and then produc-
tion vehicles is a key challenge. To address this and 
facilitate rapid prototyping, we present a so�ware stack 
for an autonomous vehicle capable of vehicle motion 
control and localization using sensor fusion and a 
real-time testing work�ow. While the former can serve 
as a track-proven basis for future research projects, the 
latter speeds up the development and gives high-quality 
experimental results at signi�cantly lower cost and e�ort 
than trials with a full-size vehicle prototype. �e work 
completed by the TUM was supported by Speedgoat. 
Simulink® was chosen as the main modeling tool and 
Speedgoat real-time target machines together with 
Simulink Real-Time™ as the real-time prototyping and 
testing platform.

Roborace Research Project at the TUM
Racing has always provided incentive to develop new 
automotive technologies. High speeds and operation at 
the vehicle’s handling limit enable engineers to identify 
shortcomings with current technology and therefore 
enhance hardware and so�ware beyond state-of-the-art 
standards. One of the key challenges is the development 
of algorithms with low calculation periods but 
su�ciently accurate results. Furthermore, the dynamic 
and unstructured driving situations at the racetrack
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Testing the controls was another major challenge since 
the track time was very limited. While desktop 
simulation can help to run initial tests, real-time aspects 
and communication interfaces cannot be covered with 
this approach. To cover these aspects, the team used a 
Speedgoat Performance real-time target machine. By 
running their vehicle model in real-time and using the 
actual hardware interfaces, the team was able to test 
their controls early on under realistic conditions. 

�e major advantages of this approach are:

   • Testing safety critical functions in advance without 
      risking damage to the vehicle

   • Finding errors that would otherwise appear on the 
      track 

   • Optimizing the performance of the controls 

�is allowed the team to make the best use of limited 
track time.

Importance of Real-Time Prototyping and 
Testing for Control Software Development 
in AD
Driving at the handling limits presents signi�cant 
challenges for autonomous driving so�ware: 

   • Multiple sensor signals must be combined to 
      determine accurate and reliable information about 
      the current vehicle state. �ese signals are captured 
      at di�erent rates and resolutions. Merging sensor 
      signals will subsequently be referred to as sensor 
      fusion.  

   • �e vehicle motion dynamics must be stabilized 
      around a target race trajectory. �is requires feedback 
      information to mitigate external disturbances like 
      wind gusts, track inclination and tarmac 
      irregularities. �is continuous process of stabilization 
      will subsequently be referred to as vehicle motion 
      control. 

To optimize the performance of control and fusion 
algorithms, high sampling rates, deterministic timing 
and real-time execution are crucial.

To enable this, the research team at TUM used Simulink 
Real-Time and a Speedgoat Mobile real-time target 
machine for rapid control prototyping. Directly from 
within Simulink, this allowed the team to:

   • Deploy and execute the controls in real-time

   • Tune parameters and log data

   • Access the required communication interfaces

With this, the team was able to quickly iterate, tune and 
test their control designs and minimize the time needed 
for hardware and so�ware integration.
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MathWorks provides Simulink Real-Time, which 
includes a real-time operating system as well as several 
host capabilities that enable real-time applications to be 
created from Simulink models, deployed on Speedgoat 
real-time target machines, and controlled directly from 
Simulink and MATLAB®.

Mobile real-time target machine

�e TUM Roborace Team uses a Speedgoat Mobile 
real-time target machine in the DevBot 2.0. 

�e system is con�gured as follows:

   • Processor: Intel i7 2.5 GHz Dual Core
   • RAM: 4 Gb   
   • Modules: IO601 for CAN communication

Software and Hardware
To replicate the conditions under which the controls 
described in this article will eventually be used in the 
DevBot 2.0 as closely as possible, an identical real-time 
prototyping platform was used. �is joint solution from 
MathWorks® and Speedgoat for deterministic real-time 
prototyping and testing consists of Simulink Real-Time 
and Speedgoat real-time target machines.  

Speedgoat‘s solution for real-time simulation consists of 
the target machines that can be con�gured using 
Speedgoat’s broad range of I/O and FPGA modules. 
�ese modules enable users to directly interface with the 
vehicle’s networks, sensors, and actuators and, if needed, 
deploy algorithms onto FPGAs to achieve higher 
sampling rates. 

�e toolchain provided by Speedgoat and MathWorks 
enables the algorithms designed in Simulink to be 
directly transferred to a real-time platform o�ering the 
required interfaces, all from within Simulink. It is also 
the most direct path to simulating and testing 
algorithms in real-time.
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�e �lter combines a dynamic system model and the 
sensor measurements. �e model takes the current 
accelerations and yaw rate as inputs, and predicts the 
upcoming states using Newtonian mechanics. �e 
velocity and position measurements are used to correct 
the predicted vehicle state. �is simple model is superior 
to more complex vehicle dynamics models (e.g. a 
single-track model) as it does not introduce model bias 
in the nonlinear tire region due to inevitable parameter 
mismatch. In the sensor setup described, which is 
similar to others commonly used for autonomous 
driving, the choice of this simple model improves state 
estimation quality, rather than making it worse by 
introducing incorrect assumptions about tire or vehicle 
parameters. At the same time, the model is 
computationally cheap and delivers robust performance 
independent from the driving scenario. Details and 
theoretical background on this concept can be found in [2].

Methodology

�is section describes the real-time control so�ware of 
the TUM autonomous driving so�ware stack. Its 
high-level architecture [3-4] is depicted in Figure 3. �e 
so�ware is split into a planning and a control module. As 
stated above, the control so�ware module is executed on 
a real-time control unit to guarantee accurate timing in 
dynamic driving maneuvers. �e real-time control 
so�ware itself is divided into sensor fusion and vehicle 
motion control. 

Sensor Fusion
�e sensor fusion module is based on an Extended 
Kalman Filter combining measurements from di�erent 
sensors. It allows the fusion of vehicle acceleration as 
well as yaw rate measurements (coming from an inertial 
measurement unit (IMU)), velocity measurements (e.g. 
an optical �ow sensor or wheel speed sensors) and 
multiple localization sources. �e localization signals 
may come from GPS, LIDAR-SLAM or Visual-SLAM. 
�e minimum setup required for operation is one 
localization source and one IMU sensor. On the Devbot 
2.0, a GPS and an IMU sensor are used. 
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Figure 3 - Software architecture
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the relation between the steering angle, vehicle velocity 
and driven curvature and adds a correction signal to the 
neutral steer assumption based on past data. �e 
learning component compensates under- and 
oversteering as well as small steering actuator 
miscalibrations. �e curvature controller is completed by 
a proportional feedback gain to reduce the in�uence of 
external disturbances and model uncertainty. 
�e longitudinal control task is covered by a velocity 
controller. It consists of a feedforward part, based on a 
stationary inverse powertrain model which compensates 
for driving resistances such as aerodynamic drag, and a 
proportional feedback combined with a disturbance 
estimation. �e latter estimates the di�erence between 
the expected acceleration and actual measured 
acceleration and applies correction signals if they are not 
equal. �is helps to mitigate unmodeled e�ects, such as 
track inclination. 

Vehicle Motion Control

�e vehicle motion control part of the so�ware generates 
appropriate steering and overall traction force requests 
based on the target trajectory and the current vehicle 
position. Its overall structure is depicted in Figure 4. �e 
vehicle speed and the deviation from the target path are 
controlled. Furthermore, the lateral dynamics are 
stabilized via a low-level curvature controller. All 
controllers are based upon a two degrees of freedom 
architecture, separating the control request generation 
into a feedforward part and a feedback part [3].

�e setpoint for the curvature controller is derived from 
a feedforward term for the current path curvature and a 
feedback part based on the lateral deviation and the 
velocity heading error. �e curvature setpoint is 
converted into a steering angle using a neutral steer 
assumption from the basic vehicle kinematics. 
Furthermore, a learning component monitors
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Figure 4: Vehicle motion control structure
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simulation on a separate real-time system. �e actual 
vehicle control so�ware can therefore be tested in a 
classic HIL setting. Example models for both setups are 
available from the so�ware repository [5]. 

Software Design Methodology for Simulink 

�e so�ware is designed using several advanced 
Simulink design techniques, which will be described 
below in addition to the reasons for using these 
techniques within the development work�ow. 

Most importantly, the use of Simulink Projects enables 
the vehicle control so�ware and the vehicle simulation to 
be separated into di�erent so�ware repositories. �e 
vehicle control so�ware project references the vehicle 
simulation project. �is allows the models managed in 
the simulation repository to be used within the 
controller development repository. Simulink Project 
manages the MATLAB path and allows a de�ned and 
reproducible working environment to be created for 
development and code generation on multiple 
development computers.

Referenced Models and Bus De�nitions help make the 
so�ware modular. �e so�ware consists of 
approximately 20 Simulink models (*.slx), which either 
provide a de�ned functionality or can be used to create 
di�erent models. �eir interfaces are speci�ed 
independently from the models by utilizing Bus 
De�nitions. �is ensures consistent interfaces and is 
checked during the model update process. �e 
separation into multiple �les provides a natural 
separation of concerns, a well-known so�ware 
development paradigm, and furthermore eases version 
control. Another technique to improve version control 
capabilities is to outsource complex functionality to 
.m-Files which can be called using Simulink MATLAB 
Function blocks. �is enables text-based comparison and 
merge tools to be used in the version control so�ware.  

Vehicle Dynamics Simulation
�e simulation environment used for developing and 
evaluating the controller is based on a dual-track model. 
�is choice is common for controller development, as it 
considers the most signi�cant e�ects for vehicle motion 
control. It includes the combined lateral and longitudinal 
nonlinear tire behavior, the lateral and longitudinal load 
transfer for the tires as well as the wheel dynamics. �e 
Vehicle Dynamics Blockset (VDBS) developed by 
MathWorks provides the building blocks required to 
create such models as well as several reference 
applications to get started easily. �e results presented in 
this article were obtained using the passenger vehicle 
model from the Double-Lane Change Maneuver 
reference application from MathWorks. �e vehicle 
model in conjunction with the TUM so�ware stack were 
used to build a real-time simulation. An advanced 
version of this simulation model with modi�cations to 
meet the requirements of autonomous racing is also 
available in the open source so�ware repository [5]. 

Real-Time Deployment to Speedgoat 
machines
�is section outlines how the sensor fusion and vehicle 
control pipeline can be modeled within Simulink and 
then deployed to the Speedgoat Mobile real-time target 
machine using Simulink Real-Time. �e models are 
divided into the three parts depicted in Figure 5: �e 
vehicle simulation (tires, vehicle body, actuators and 
sensors), the vehicle control so�ware and the trajectory 
planning emulation (provides the interface to the 
trajectory planning so�ware and basic functionality for 
development purposes). �is article and the 
corresponding so�ware stack present two di�erent 
variants for e�ective real-time testing: �e �rst variant 
deploys all so�ware components onto a single real-time 
system and leverages loopback hardware interfaces for 
communication between them. �e second variant 
deploys the trajectory planning emulation and vehicle 
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several vehicles are running the same code but require 
di�erent control parameters. Furthermore, DDs may 
reference other DDs. A prominent use case for this is the 
interface DD for the Bus De�nitions or a vehicle 
parameter DD.

�e complete real time application runs with a sample 
rate of two milliseconds and uses the ode2-solver. �is 
con�guration has proven to o�er a good trade-o� 
between accuracy and computational speed. �e 
controller itself operates at four milliseconds and uses 
the �xed-step discrete solver.

Finally, the so�ware uses Data Dictionaries (DD). �ese 
�les can be thought of as a private workspace belonging 
only to the model to which they are attached. �ey allow 
the designer to separate algorithm development from 
data storage and can store multiple di�erent 
parametrizations per algorithm. �is is useful in case 

Deployment to Speedgoat Real-Time Target 
Machine via Simulink Real-Time
�is section describes the con�guration of the loop-back 
simulation example setup (see Figure 5). A similar 
procedure can be applied for the HIL variant. �e I/O 
modules of the target machines used for the examples 
slightly di�er from the ones in the DevBot, however the 
con�guration approach remains the same.

First, two real-time UDP interfaces and the CAN 
interface of the IO614 module must be con�gured as 
depicted in Figure 6. We will use 10.0.1.0 as the IP for the 
controller interface and 10.0.2.0 as the IP for the trajectory 
planning interface. �e CAN interface of the controller 
is Module ID 1 – Port 1 and the interface of the vehicle 
simulation is Module ID 1 – Port 2. �is results in the 
structure depicted in Figure 3. In the examples provided, 
sensor signals can be grouped into CAN messages and 
therefore be easily changed directly in Simulink. �e 
UDP messages are handled in a similar way.  

Sensor Fusion and Motion Control for Autonomous Racing Cars

Figure 5 - Real-time testing setup variants

Figure 6 - Hardware configuration of loop-back testing model
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�e largest lateral deviations occur in a demanding 
le�-right, high-speed combination right a�er the back 
straight. A real-world evaluation of the control so�ware 
for a Roborace DevBot on the Berlin 2019 Formula-E 
racetrack is presented in [3].

Results
�e VDBS double-lane change example model together 
with the so�ware stack running on the HIL setup 
mentioned above accurately predicts the driving behavior 
on the Monteblanco racetrack, Spain (see Figure 7). 
�e open source repository [5] provides several racetracks 
to enable controller development. �e required target 
trajectories have been created using a so�ware package 
developed by the Chair of Automotive Technology at 
TUM, which can be accessed at GitHub. Please see the 
Readme of this so�ware package for further details.
 

Vehicle Motion Control Performance

�e tracking performance of the vehicle motion 
controller for the standard VDBS vehicle is depicted in 
Figure 8. �e �gure shows good tracking performance 
under challenging vehicle dynamics conditions with 
longitudinal and lateral accelerations up to 9m / s2, even 
though the vehicle under control is not a racecar.
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Figure 7 - Monteblanco racetrack, Spain

Figure 8 - Trajectory tracking performance
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Conclusion
We have presented a real-time control so�ware stack 
capable of autonomous driving at the limits of handling. 
It consists of a sensor fusion and a vehicle motion control 
part. In fact, we have illustrated two concepts for 
real-time testing: A basic version running on a single 
real-time target machine and a full HIL setup for testing 
the vehicle control unit under realistic conditions. �e 
open-source so�ware stack [5] has examples for both 
setups and is therefore a good starting point for further 
development.

Sensor Fusion Performance

�e sensor fusion can be easily assessed in a HIL 
simulation, because ground truth data is available. �e 
so�ware does not have access to velocity measurements 
in this setup and therefore estimates the longitudinal 
and lateral velocities from the fusion of the localization 
and the IMU signals. Figure 9 shows a comparison of the 
estimated and the actual velocity obtained from ground 
truth logging from the simulation model. A detailed 
evaluation of the sensor fusion algorithm using 
real-world data is presented in [2].
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Figure 9 - Sensor fusion performance
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