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Permanent Magnet Synchronous Machine
�e PMSM mathematical model in the rotor d-q 
reference frame is given by the following equations [4]:

Figure - Representation of typical PM synchronous machine

Challenge
For a PMSM-based servo system, synthesize a position 
and velocity control algorithm with the following 
properties: (1) fast convergence to the reference, (2) 
disturbance rejection and (3) low computational 
complexity that �ts typical FPGA or microcontroller 
speci�cations.

Control Strategy
�e multi-rate cascaded control structure is depicted in 
the �gure below and it is composed of:
1) Current control inner-loop based on �eld-oriented 
     control, and
2) Position control outer-loop using a linear quadratic 
     regulator (LQR)microcontroller speci�cations.

Key Takeways
• Experimental position control of PM synchronous motor

• Simple framework to design multi-rate motor controllers

• Outer loop: LQR position controller with disturbance 

   observer

• Inner loop: field-oriented control of stator currents

• Real-time testing using multi-core CPUs and a Xilinx FPGA

• Automatic C and VHDL code generation from Simulink

• No need to convert to fixed-point, stay in floating-point

Abstract
�e position control problem in permanent magnet 
synchronous machine (PMSM) drives is a challenging 
problem which is subject to tight time constraints and 
unknown disturbances. �is article presents experimen-
tal validation of a cascade control structure for position 
control in PMSM drives. A PI-based control algorithm is 
used in the inner loop to control the stator currents in 
the rotor d-q reference frame. �en an optimal controller 
is synthesized in the error space of the outer loop to 
control the position and velocity of the PMSM. A 
disturbance observer is employed to estimate the load 
torque and parameter mismatch of the drive and a 
control algorithm is deployed on a real-time system with 
a �eld-programmable gate array (FPGA) board, thereby 
performing an experimental validation in real-time.

Introduction
�e position control problem in PMSM drives is 
challenging due to tight time constraints and unknown 
disturbances. For best results, the control in PMSM 
drives is usually done through �eld-oriented control 
(FOC) [3] in the rotor d-q reference frame [4]. �e basic 
idea of FOC is to control the torque and �ux in a similar 
manner with the DC machine. It yields a cascade control 
solution with two inner loops for current control and 
outer velocity and position control loops [5].
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Figure - Diagram of PMSM control architecture

�e load torque estimation and the inner closed-loop is 
implemented with a sample time of 80 μs. �e actual 
rotor position is obtained from an incremental quadratu-
re encoder �tted to the motor sha�. �e controller

�e solution to the position tracking control problem is 
solved by

with uref being related to the reference input feedforward, 
and x and xref being the measured and reference states of 
the equations of motion for the control outer-loop. �e 
load torque is unknown but required for the input 
feedforward uref . A disturbance observer is derived to 
solve the tracking control problem.

Real-Time Implementation
A multi-rate cascade control structure is used to control 
the PMSM rotor position. �e motor currents are 
controlled through the inner control loop with a faster 
sample rate Tf while the position tracking is controlled 
via the outer control loop running with a slower sample 
rate Ts. Furthermore, the PWM signal generation and 
incremental quadrature encoder measurements need to 
run at a very fast sample rate TFPGA.

u = K(x − xref) + uref

Figure – Cascade control structure
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Figure: Experimental setup for rapid control prototyping
for LQR-based position control of PMSM

Hardware Implementation
�e cascade control structure is modeled in Simulink 
and deployed to a Speedgoat real-time system. �e latter 
consists mainly of two components:

a) Baseline real-time target machine with a quad core 
    CPU
b) IO397 Simulink-programmable FPGA I/O module 
    with a Xilinx Artix®-7 FPGA connected to 8 analog 
    inputs, 8 analog outputs and 14 digital I/O

Code is automatically generated from the Simulink 
models to the CPU or FPGA by using Simulink 
Real-Time™ or HDL Coder™, respectively. �e experi-
mental setup is depicted on the right.

Experimental Results
�e tracking performance of the position control is tested with a step change of 180 degrees. �e position results are 
shown in the �gures below. �e LQR controller (green solid lines) can be optimized to obtain smooth and fast transient 
response. When a constant disturbance is applied a�er around 2.1 seconds, the LQR controller (green solid lines) has a 
better disturbance rejection than the PID controller (red dotted lines), both for transient and steadystate conditions.

Figure: Measured rotational velocity

Figure: Measured electromagnetic torqueFigure: Measured position tracking
for step change with torque
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Figure: Torque disturbance

Figure: Torque estimation
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Conclusion
�is article discusses a multi-rate controller architecture to control angular position of a PMSM. An LQR position 
controller with a disturbance observer is derived and modeled in Simulink. A PID controler is also modeled for 
comparison purposes. �e Simulink model of the control architecture is deployed to a Speedgoat real-time target 
machine with a multi-core CPU and a Xilinx FPGA, that is in turn connected to a PMSM drive and motor. With the 
proposed rapid control prototyping setup, the Simulink-based model could be later deployed to a microcontroller or 
FPGA for �nal production. Experimental results demonstrate the improved disturbance rejection of the LQR controller.
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