Knowledge Center search search close
Collection of videos, reference examples, and more to support your real-time simulation and testing workflows

Content


Real-Time Simulation and Testing with Simulink Real-Time and Speedgoat Hardware

Real-Time Simulation and Testing with Simulink Real-Time and Speedgoat Hardware

Speedgoat real-time solutions and Simulink® are expressly designed to work together for creating real-time systems for desktop, lab, and field environments.

Workflow Introductions

Hardware-in-the-Loop

Rapid Control Prototyping

Rapid Control Prototyping

Rapid Control Prototyping

Accelerate Control Design Innovation With Model-Based Design Ready Solutions for a Worry-Free Test and Simulation Experience.

Workflow Introductions

Rapid Control Prototyping

Industry Use Cases

Introduction to Speedgoat Simulink-Programmable FPGAs

Introduction to Speedgoat Simulink-Programmable FPGAs

Learn about the Simulink-integrated workflows to program FPGA I/O modules easily and directly from your model.

Workflow Introductions

Hardware-in-the-Loop

Rapid Control Prototyping

Speedgoat Configurable I/O Modules

Speedgoat Configurable I/O Modules

Learn about the Simulink-integrated workflows to configure I/O modules easily and directly from your model.

Workflow Introductions

Hardware-in-the-Loop

Rapid Control Prototyping

Topological Analog Signal Processing

Topological Analog Signal Processing

Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) used a Speedgoat Performance real-time target machine and a high-speed analog IO131 module to validate an acoustic topological equation solver experimentally. The setup allowed them to demonstrate the robustness of analog signal processors (ASP) and is an essential step towards a new generation of ultrafast all-optical ASPs. 

Publication on nature.com

Published Papers

Rapid Control Prototyping

Robust Switching Control Method to Achieve Tokamak-Shaped Plasma

Robust Switching Control Method to Achieve Tokamak-Shaped Plasma

A robust switching control method with state vector matching and a novel approach for the feedback system simulation are presented in this paper. First, the plant model reconstructs plasma equilibria from experimental data and calculates plasma shape changes. Then, the control system is discretized and run on a high-speed computer for experiments on a real-time testbed.

Publication on sciencedirect.com

Published Papers

Rapid Control Prototyping

Rapid Control Prototyping Tool for the Sirius High-Dynamic DCM Control System

Rapid Control Prototyping Tool for the Sirius High-Dynamic DCM Control System

The monochromator is known to be one of the most critical optical elements of a synchrotron beamline. A Simulink implementation running on a Speedgoat Performance real-time target machine identifies and ensures controlling the dynamic behavior of all subcomponents in the prototype. In addition, this approach enables rapid prototyping by allowing a shared environment for system modeling and testing.

Publication on inspirehep.net

Published Papers

Rapid Control Prototyping

Drag Reduction in Turbulent Boundary Layer via Real-Time Control

Drag Reduction in Turbulent Boundary Layer via Real-Time Control

This paper demonstrates an approach to real-time control of large-scale structures. Real-time controls reduce the streamwise turbulence intensity as well as skin-friction drag.

Publication on sciencedirect.com

Published Papers

Rapid Control Prototyping

Follow Speedgoat LinkedIn