Knowledge Center search search close
Collection of videos, reference examples, and more to support your real-time simulation and testing workflows

Content


Hardware-in-the-Loop Testing for Electric Powertrains

Hardware-in-the-Loop Testing for Electric Powertrains

Advance EV powertrain testing: real-time digital twin simulation, modular hardware-in-the-loop test benches, end-to-end automation. 

Recorded Webinars

Hardware-in-the-Loop

Validating Motor Control Algorithms with Hardware-In-The-Loop Testing

Validating Motor Control Algorithms with Hardware-In-The-Loop Testing

Learn how to develop and test motor control algorithms. See how you can validate the embedded software by performing hardware-in-the-loop (HIL) testing of the control algorithms

Recorded Webinars

Hardware-in-the-Loop

Enabling Innovation for Automotive Hardware-in-the-Loop Testing and Control Design

Enabling Innovation for Automotive Hardware-in-the-Loop Testing and Control Design

Learn how Speedgoat real-time test solutions, help you to speed up designing and testing automotive control systems.

Recorded Webinars

Hardware-in-the-Loop

Enabling Innovation for Automotive HIL Testing and Control Design

Enabling Innovation for Automotive HIL Testing and Control Design

This recorded webinar presents how you can accelerate innovations in the automotive industry with real-time simulation and testing using Speedgoat solutions.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

Hardware-In-Loop Testing of Balance of Plant Controller of Fuel Cell System

Hardware-In-Loop Testing of Balance of Plant Controller of Fuel Cell System

Learn how modeling and simulating complete fuel cell stack, balance of power software components and other adjacent systems enables engineers from different domains to collaborate with each other and identify design issues early in the design phase. Thoroughly test controller logic in real-time with hardware-in-the-loop (HIL) test bench using Simulink Real-Time and Speedgoat test system.

Hardware-in-the-Loop

Recorded Webinars

Automated and Continuous Hardware-in-the-Loop Testing

Automated and Continuous Hardware-in-the-Loop Testing

Learn about hardware-in-the-loop (HIL) testing and how to efficiently test controls using Speedgoat and MathWorks’ unified HIL solution.

Recorded Webinars

Hardware-in-the-Loop

Accelerate Development of Electric Vehicles with Real-time Testing

Accelerate Development of Electric Vehicles with Real-time Testing

This webinar presents how real-time testing accelerates innovation of automotive electrification, from electric powertrains and power management systems to high-voltage DC battery chargers. It shows how HIL testing is crucial to de-risk integration testing of electric propulsion and battery management systems.

Hardware-in-the-Loop

Rapid Control Prototyping

Recorded Webinars

Assessment of State-of-Charge Estimation Method for Lithium-Ion Batteries

Assessment of State-of-Charge Estimation Method for Lithium-Ion Batteries

In this paper, a numerical model of lithium-ion batteries is developed and deployed to a Speedgoat Baseline target machine. The estimation method for the state-of-charge (SOC), based on a nonlinear autoregressive with exogenous input (NARX) and artificial neural networks (ANNs) that are correctly trained with multiple datasets, is designed, and experimentally validated by hardware-in-the-loop simulation.

Publication on mdpi.com

Published Papers

Hardware-in-the-Loop Testing (HIL) of State-of-Charge (SoC) Estimation for Li-Ion Batteries

Hardware-in-the-Loop Testing (HIL) of State-of-Charge (SoC) Estimation for Li-Ion Batteries

This study presents the design and validation of an SoC estimation method for lithium-ion batteries in hybrid-electric vehicles (HEV). The battery model is deployed on a Speedgoat Baseline machine connected to a Raspberry Pi emulating the ECU based on an artificial neural network for HIL testing. The algorithm can estimate the SoC of the battery with 2% accuracy during real-time testing.

Published Papers

Hardware-in-the-Loop

Developing and Testing Control Systems with MATLAB and Simulink

Developing and Testing Control Systems with MATLAB and Simulink

The webinar explains you an engaging learning experience by exposing you to a broad set of real-life testing scenarios, including real-time interactions with digital twin simulators and physical systems, such as motion sensors, electric motors, and robot manipulators.

Rapid Control Prototyping

Hardware-in-the-Loop

Recorded Webinars

Accelerate Development of Electric Vehicles with Real-Time Testing

Accelerate Development of Electric Vehicles with Real-Time Testing

Real-time testing accelerates innovation of automotive electrification, from electric powertrains and power management systems to high-voltage DC battery chargers.

Recorded Webinars

Rapid Control Prototyping

Hardware-in-the-Loop

Addressing Challenges Involved in Developing Battery Management Systems Using Simulink

Addressing Challenges Involved in Developing Battery Management Systems Using Simulink

Learn how to model battery cell models as a function of battery charge, temperature and scale the cell model up to a battery pack. Monitor cell voltage and temperature, estimate state-of-charge (SOC) and state-of-health (SOH) across the pack. Use simulations to model feedback and supervisory control algorithms. Generate production-quality C/C++ code for target embedded processors. Perform Hardware-In-Loop testing using Speedgoat real-time test system.

Hardware-in-the-Loop

Recorded Webinars

HIL Testing of BMS using Simulink Real-Time and Speedgoat target hardware

HIL Testing of BMS using Simulink Real-Time and Speedgoat target hardware

This webinar will demonstrate how engineers can perform hardware-in-the-loop (HIL) testing to validate and test their Battery Management Systems design using Simulink Real-TimeTM and Speedgoat Target hardware.

Recorded Webinars

Hardware-in-the-Loop

 Rapid Control Prototyping for Power Electronics Control Design

Rapid Control Prototyping for Power Electronics Control Design

This recorded webinar shows how power electronics control engineers can use rapid control prototyping (RCP) with Simulink Real-Time™ and Speedgoat real-time target machines to validate Simulink® algorithms against electric motor and power converter prototype systems.

Recorded Webinars

Rapid Control Prototyping

Accelerate Development of Power Systems with Real-Time Testing

Accelerate Development of Power Systems with Real-Time Testing

This webinar will present how real-time solutions are being used to accelerate electric power generation, renewable energy integration, and onboard systems development. It highlights how Speedgoat real-time solutions enable electrical and control engineers to develop, test, and validate their innovations with hardware prototypes.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

HIL and Automated Testing Applications for Aerospace

HIL and Automated Testing Applications for Aerospace

This recorded webinar presents how hardware-in-the-loop (HIL) testing is used to develop, test, and validate new aircraft components or systems such as controllers for aileron actuators. 

Recorded Webinars

Hardware-in-the-Loop

Advancing Electrification with Real-Time Testing

Advancing Electrification with Real-Time Testing

This recorded webinar presents how you can leverage real-time solutions to accelerate renewable energy integration and electric vehicle developments.

Recorded Webinars

Rapid Control Prototyping

Independent Generation of Sequence Elements by Motor Cortex

Independent Generation of Sequence Elements by Motor Cortex

Rapid execution of motor sequences depends on fusing movement elements into cohesive units that are executed holistically. The contribution of the primary motor and dorsal premotor cortex to this ability is determined in this paper. Also, the hypothesis that movement elements fuse makes specific predictions regarding three forms of activity, preparation, initiation, and execution is investigated.

Publication on nature.com

Published Papers

Developing and Testing Next Generation Control Systems

Developing and Testing Next Generation Control Systems

Learn how Speedgoat enables you to prototype and test complex control algorithms using full-vehicle simulation. By building a virtual environment for safe and realistic testing and verification, you can reduce prototype testing costs.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

Real-Time Simulation and Testing: Hardware-in-the-Loop

Real-Time Simulation and Testing: Hardware-in-the-Loop

Hardware-in-the-Loop (HIL) Simulation and Testing with Simulink Real-TimeTM and Speedgoat target computers.

Recorded Webinars

Hardware-in-the-Loop

Continental: Accelerated Development Using Rapid Control Prototyping

Continental: Accelerated Development Using Rapid Control Prototyping

This project shows a solution whereby engineers can quickly move from SIL to HIL using a Speedgoat system with programmable FPGA technology instead of an original ECU. 

Recorded Webinars

Hardware-in-the-Loop

CPU, FPGA, and I/O Solutions for Real-Time Simulation and Testing with Simulink

CPU, FPGA, and I/O Solutions for Real-Time Simulation and Testing with Simulink

In this webinar, MathWorks together with Speedgoat will showcase how to perform real-time simulation and testing, enabling you to rapidly and continuously test and prove your designs, from desktop simulation to testing your designs in real time on hardware platforms.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

Model-Based Design for Predictive Maintenance, Code Generation and Real-Time Testing

Model-Based Design for Predictive Maintenance, Code Generation and Real-Time Testing

This video shows how to automatically generate C code from classification models. First, you’ll see how to validate your algorithm on the desktop. Then, once it is validated, the video will show how to generate code. Next, the video walks through how to use Simulink® to deploy the classification model onto a B&R PLC, and then test it on a real-time representation of the system using a Speedgoat machine.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

Motion Planning and Experimental Validation for an Autonomous Bicycle

Motion Planning and Experimental Validation for an Autonomous Bicycle

This paper introduces a prototype autonomous two-wheeled vehicle developed for experimental verification of motion planning and control algorithms. Finally, it presents and discusses experiments run on the actual vehicle for a particular maneuver. It emphasizes the differences between the trajectories created by different vehicle models.

Publication on ieeexplore.ieee.org

Published Papers

Rapid Control Prototyping

A Software Architecture for an Autonomous Racecar

A Software Architecture for an Autonomous Racecar

The authors present a detailed description of the software architecture used in the autonomous Roborace vehicles by the TUM-Team. The architecture combines the autonomous software functions perception, planning, and control, which are modularized for use on different hardware and to drive the car on high-speed racetracks. 

Publication on ieeexplore.ieee.org

Published Papers

Follow Speedgoat LinkedIn