Knowledge Center search search close
Collection of videos, reference examples, and more to support your real-time simulation and testing workflows

Content


Power Electronics Solutions

Power Electronics Solutions

Design, test, and validate digital controls for electric motors, power converters, and battery management systems.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Hardware-in-the-Loop Simulation

Hardware-in-the-Loop Simulation

Effectively Test Controls with Real-Time Digital Twins and Automated Testing.

Workflow Introductions

Hardware-in-the-Loop

Industry Use Cases

Rapid Control Prototyping

Rapid Control Prototyping

Accelerate Control Design Innovation With Model-Based Design Ready Solutions for a Worry-Free Test and Simulation Experience.

Workflow Introductions

Rapid Control Prototyping

Industry Use Cases

RCP for Wide Bandgap Semiconductors

RCP for Wide Bandgap Semiconductors

Control power modules using SiC or GaN wide bandgap (WBG) semiconductors. Speedgoat real-time systems can handle controllers for switching frequencies up to 2 MHz.

Industry Use Cases

Rapid Control Prototyping

Virtual Commissioning

Virtual Commissioning

Test and automate testing of large-scale industrial plants and networks with hundreds or thousands of nodes leveraging real protocol interconnects, provided by hardware chips that are used in millions of embedded devices.

Hardware-in-the-Loop

Industry Use Cases

Computer Vision

Computer Vision

Rapidly build, run, and test video acquisition and control applications with a Speedgoat real-time target machine. There is a wide range of applications from the design of phone cameras to autonomous vehicle systems.

Rapid Control Prototyping

Hardware-in-the-Loop

Industry Use Cases

Audio

Audio

Highly controlled manipulations are required e.g. for hearing aids, noise cancelling headphones, or car acoustics. Speedgoat real-time systems provide high performance, high-resolution analog and digital I/O, together with MATLAB & Simulink.

Rapid Control Prototyping

Hardware-in-the-Loop

Industry Use Cases

Embedded

Embedded

Leverage real-time target machines for use as embedded controllers.

Rapid Control Prototyping

Industry Use Cases

Power Hardware-in-the-Loop

Power Hardware-in-the-Loop

Speedgoat provides a wide range of real-time P-HIL solutions to test and verify power electronics and power system components. Utilize complex physical models designed with MathWorks tools on multi-core CPUs and FPGAs with the highest level of performance.

Hardware-in-the-Loop

Industry Use Cases

HIL of Battery Management Systems

HIL of Battery Management Systems

Verify, validate, and test battery management system (BMS) controllers and hardware components using hardware-in-the-loop testing (HIL) and battery cell emulators.

Industry Use Cases

Hardware-in-the-Loop

RCP for Motor Control Drives

RCP for Motor Control Drives

Design, test, and validate novel motor control algorithms for electric motors using Simulink® and Speedgoat hardware. Use a wide range of functionality like PWM, encoders, and many more.

Industry Use Cases

Rapid Control Prototyping

HIL Testing of Electric Motor Controls

HIL Testing of Electric Motor Controls

Test, and validate embedded controllers for electric motors and drives using Simulink and Speedgoat hardware. Emulate electric motors, inverters, resolvers, among other components.

Industry Use Cases

Hardware-in-the-Loop

RCP for Power Converter Control

RCP for Power Converter Control

Use Simulink and Speedgoat to develop power converters with high-frequency switching such as high-voltage DC (HVDC), DC/DC converters, grid-tied inverters, grid-forming inverters, and many more.

Industry Use Cases

Rapid Control Prototyping

HIL Testing of Power Electronics

HIL Testing of Power Electronics

Accelerate the development of power electronic converters such as DC/DC, AC/DC, or MMC  using hardware-in-the-loop testing.

Industry Use Cases

Hardware-in-the-Loop

Electric Vehicle Powertrains

Electric Vehicle Powertrains

Develop powertrains and fast chargers for electric vehicles including electric motors, inverters, transmissions, and power management systems.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Power Hardware-in-the-Loop

Power Hardware-in-the-Loop

HIL testing of power components like battery chargers using AC or DC power interfaces. Speedgoat supports power amplifiers from EGSTON Power, Cinergia, and Puissance Plus.

Industry Use Cases

Hardware-in-the-Loop

HIL of Grid-Side Inverter Controllers

HIL of Grid-Side Inverter Controllers

Advance control development using HIL testing. Reuse models from desktop simulation and include switching dynamics up to 5 kHz using CPUs or 100 kHz with FPGAs.

Industry Use Cases

Hardware-in-the-Loop

Power Hardware in-the-Loop Validation of DC-DC Power Converter

Power Hardware in-the-Loop Validation of DC-DC Power Converter

The paper describes the development of a power converter small-scale mock-up and a real-time model of an offshore wind farm. Power Hardware In-the-Loop (PHIL) validation is proposed for a demonstration of grid architecture and control principles. Results obtained with a test bench underline the importance of PHIL testing in the power converter development for DC grid applications.

Publication on ieeexplore.ieee.org

Published Papers

An Intelligent Controller based Power Grid Interconnected System for Reliable Operation

An Intelligent Controller based Power Grid Interconnected System for Reliable Operation

The main objective of the research presented is to control the unidirectional boost converter (UBC) by implementing an intelligent controller (IC). The IC continuously captures power conversion based on power output data from wind and solar energy. Then, it injects gate pulses into a power electronic switch based on the data value. The overall design and simulations are performed using MATLAB/SIMULINK.

Publication on ieeexplore.ieee.org

Rapid Control Prototyping

Published Papers

Phase-Exact Adaptive Feedforward Control Modulated Gear Mesh Vibration at 4.7 kHz

Phase-Exact Adaptive Feedforward Control Modulated Gear Mesh Vibration at 4.7 kHz

This paper proposes a setup for active vibration control to suppress transmission of gear mesh vibration to the surrounding structure using piezoelectric inertial mass actuators. The proposed control algorithm uses multiple adaptive feedforward controllers. To achieve the desired sampling frequency in real-time several optimizations are introduced.

Publication on ieeexplore.ieee.org

Published Papers

Design and Implementation of Bi-Directional DC-DC Converter for Wind Energy System

Design and Implementation of Bi-Directional DC-DC Converter for Wind Energy System

This paper features designing and implementing a bi-directional DC-DC converter with a Speedgoat controller for wind energy conversion systems. An energy storage device is used to compensate for the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. The complete system is implemented in MATLAB/SIMULINK and verified with hardware.

Publication on scirp.org

Published Papers

Rapid Control Prototyping

Fault Diagnosis of Star-Connected Auto-Transformer-Based 24-Pulse Rectifier

Fault Diagnosis of Star-Connected Auto-Transformer-Based 24-Pulse Rectifier

The authors propose a fault diagnosis method for star-connected auto-transformer-based 24-pulse rectifier unit (ATRU) by integrating artificial neural networks (ANN) with wavelet packet decomposition (WPD) and principal component analysis (PCA). First, the fault features are extracted and simulated in a real-time simulation platform. The obtained data is then analyzed with MATLAB toolboxes and verified with a digital signal processor.

Publication on sciencedirect.com

Published Papers

Follow Speedgoat LinkedIn