Knowledge Center search search close
Collection of videos, reference examples, and more to support your real-time simulation and testing workflows

Content


Hardware-in-the-Loop Testing of Unmanned Aerial Vehicle (UAV) Controllers

Hardware-in-the-Loop Testing of Unmanned Aerial Vehicle (UAV) Controllers

Test your UAV controllers, design and tune your controllers through Simulink, 

Recorded Webinars

Hardware-in-the-Loop

Real-Time Testing for VTOL and Conventional Aircraft Development

Real-Time Testing for VTOL and Conventional Aircraft Development

Learn how Simulink Real-Time™ enables real-time controls testing to ensure safety and performance in advanced aircraft designs, including transitioning from desktop simulation, in the webinar highlighting the challenges of aircraft electrification.

Hardware-in-the-Loop

Rapid Control Prototyping

Recorded Webinars

Next Generation Aerospace: Collaborative Simulation and Integration Environments

Next Generation Aerospace: Collaborative Simulation and Integration Environments

Learn how you can leverage digital twins and test embedded hardware with Speedgoat HIL simulators for Aerospace applications. Automated and continuous testing of your controllers and controls systems enables you to deliver high-quality systems quickly, and cost-effectively.

Recorded Webinars

Hardware-in-the-Loop

Automated and Continuous Hardware-in-the-Loop Testing

Automated and Continuous Hardware-in-the-Loop Testing

Learn about hardware-in-the-loop (HIL) testing and how to efficiently test controls using Speedgoat and MathWorks’ unified HIL solution.

Recorded Webinars

Hardware-in-the-Loop

Electrification Testing and Certification Workflows in Aerospace

Electrification Testing and Certification Workflows in Aerospace

This webinar shows how hardware-in-the-loop testing accelerates testing and certification of more electric or vertical take-off and landing (VTOL) aircrafts.

Recorded Webinars

Hardware-in-the-Loop

Certification Process for a Hybrid Electric Aircraft

Certification Process for a Hybrid Electric Aircraft

The scientific aviation association (FVA) is developing the FVA 30, a hybrid electric motor glider, to research alternative propulsion systems. This article focuses on the certification process of the FVA 30 power train, using a Speedgoat target computer.

Hardware-in-the-Loop

Published Papers

Battery Management System Integration into an Electronic Control Module for a Hybrid Electric Aircraft

Battery Management System Integration into an Electronic Control Module for a Hybrid Electric Aircraft

Th­is article focuses on BMS integration into the electronic control module (ECM) of the FVA 30 hybrid electric motor glider using a Speedgoat real-time target machine. The challenge is to design an ECM for reliable data processing, allowing pilots to monitor and control the drivetrain.

Published Papers

Rapid Control Prototyping

Developing and Testing Control Systems with MATLAB and Simulink

Developing and Testing Control Systems with MATLAB and Simulink

The webinar explains you an engaging learning experience by exposing you to a broad set of real-life testing scenarios, including real-time interactions with digital twin simulators and physical systems, such as motion sensors, electric motors, and robot manipulators.

Rapid Control Prototyping

Hardware-in-the-Loop

Recorded Webinars

Vorticity Dynamics of Leading-Edge Vortex Formation on a Revolving Wing

Vorticity Dynamics of Leading-Edge Vortex Formation on a Revolving Wing

A leading-edge vortex (LEV) forms and remains stably attached on high angle-of-attack (AoA), low aspect ratio (AR) wings undergoing revolving or flapping motion at an insect’s wing. Here, the LEV formation on a revolving wing is investigated. The 'Shake-the-box' (STB) Lagrangian particle tracking velocimetry (PTV) system and a volumetric patching process helped reconstruct the entire time-resolved flow field.

Publication on springer.com

Published Papers

HIL Testing of BMS using Simulink Real-Time and Speedgoat target hardware

HIL Testing of BMS using Simulink Real-Time and Speedgoat target hardware

This webinar will demonstrate how engineers can perform hardware-in-the-loop (HIL) testing to validate and test their Battery Management Systems design using Simulink Real-TimeTM and Speedgoat Target hardware.

Recorded Webinars

Hardware-in-the-Loop

 Rapid Control Prototyping for Power Electronics Control Design

Rapid Control Prototyping for Power Electronics Control Design

This recorded webinar shows how power electronics control engineers can use rapid control prototyping (RCP) with Simulink Real-Time™ and Speedgoat real-time target machines to validate Simulink® algorithms against electric motor and power converter prototype systems.

Recorded Webinars

Rapid Control Prototyping

Accelerate Development of Power Systems with Real-Time Testing

Accelerate Development of Power Systems with Real-Time Testing

This webinar will present how real-time solutions are being used to accelerate electric power generation, renewable energy integration, and onboard systems development. It highlights how Speedgoat real-time solutions enable electrical and control engineers to develop, test, and validate their innovations with hardware prototypes.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

HIL and Automated Testing Applications for Aerospace

HIL and Automated Testing Applications for Aerospace

This recorded webinar presents how hardware-in-the-loop (HIL) testing is used to develop, test, and validate new aircraft components or systems such as controllers for aileron actuators. 

Recorded Webinars

Hardware-in-the-Loop

Advancing Electrification with Real-Time Testing

Advancing Electrification with Real-Time Testing

This recorded webinar presents how you can leverage real-time solutions to accelerate renewable energy integration and electric vehicle developments.

Recorded Webinars

Rapid Control Prototyping

Developing and Testing Next Generation Control Systems

Developing and Testing Next Generation Control Systems

Learn how Speedgoat enables you to prototype and test complex control algorithms using full-vehicle simulation. By building a virtual environment for safe and realistic testing and verification, you can reduce prototype testing costs.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

Real-Time Simulation and Testing: Hardware-in-the-Loop

Real-Time Simulation and Testing: Hardware-in-the-Loop

Hardware-in-the-Loop (HIL) Simulation and Testing with Simulink Real-TimeTM and Speedgoat target computers.

Recorded Webinars

Hardware-in-the-Loop

CPU, FPGA, and I/O Solutions for Real-Time Simulation and Testing with Simulink

CPU, FPGA, and I/O Solutions for Real-Time Simulation and Testing with Simulink

In this webinar, MathWorks together with Speedgoat will showcase how to perform real-time simulation and testing, enabling you to rapidly and continuously test and prove your designs, from desktop simulation to testing your designs in real time on hardware platforms.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

Leading-Edge Vortex and Transient Lift on a Revolving Wing at Low Reynolds Numbers

Leading-Edge Vortex and Transient Lift on a Revolving Wing at Low Reynolds Numbers

The transient formation and the stable attachment of the leading-edge vortex (LEV) contribute to the high lift generation of an insect wing when it revolves at high angles of attack. This study examined the leading-edge vortex (LEV) formation and the transient lift generation on a revolving wing, using combined computational and experimental methods.

Publication on sciencedirect.com

Published Papers

Model-Based Design for Predictive Maintenance, Code Generation and Real-Time Testing

Model-Based Design for Predictive Maintenance, Code Generation and Real-Time Testing

This video shows how to automatically generate C code from classification models. First, you’ll see how to validate your algorithm on the desktop. Then, once it is validated, the video will show how to generate code. Next, the video walks through how to use Simulink® to deploy the classification model onto a B&R PLC, and then test it on a real-time representation of the system using a Speedgoat machine.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

Real-Time Learning of Efficient Lift Generation on a Dynamically Scaled Flapping Wing

Real-Time Learning of Efficient Lift Generation on a Dynamically Scaled Flapping Wing

This work presents a successful application of a policy search algorithm to a real-time robotic learning problem, where the goal is to maximize the efficiency of lift generation on a dynamically scaled flapping robotic wing. Learning is performed for different prescribed stroke amplitudes to find the optimal wing pitching amplitude and the stroke-pitch phase difference that maximize lift generation's power loading (PL), a measure of aerodynamic efficiency.

Publication on ieeexplore.ieee.org

Published Papers

Visual Motion Tracking and Sensor Fusion for Kite Power Systems

Visual Motion Tracking and Sensor Fusion for Kite Power Systems

Line-based estimation of the kite state, including position and heading, limits the achievable cycle efficiency of such airborne wind energy systems. Experimental results of a visual motion tracking estimation and an inertial sensor fusion on a ground-based kite power system in pumping operation are presented and compared to an existing estimation scheme based on line.

Publication on springer.com

Published Papers

Rapid Control Prototyping for Permanent Magnet Synchronous Motor (PMSM) Control

Rapid Control Prototyping for Permanent Magnet Synchronous Motor (PMSM) Control

Power Electronics and Motor Control Prototyping on CPU/FPGA Target Hardware with Simulink Real-TimeTM.

Recorded Webinars

Rapid Control Prototyping

Transient Engine Emulation within a Laboratory Testbed for Aircraft Power Systems

Transient Engine Emulation within a Laboratory Testbed for Aircraft Power Systems

This paper presents an engine emulation system utilized within a hardware-in-the-loop (HIL) test environment for aircraft power systems. It focuses on the software and hardware interfaces that enable the coupling of the rotor dynamics model that provides the critical link between the modeled dynamics of the engine and the measured dynamics of the generator.

Publication on dx.doi.org

Published Papers

Hardware-in-the-Loop

Follow Speedgoat LinkedIn