Knowledge Center search search close
Collection of videos, reference examples, and more to support your real-time simulation and testing workflows

Content


Applied Physics Solutions

Applied Physics Solutions

Expedite the Path to Scientific Breakthroughs for the Most Complex and Challenging Problems

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Hardware-in-the-Loop Simulation

Hardware-in-the-Loop Simulation

Effectively Test Controls with Real-Time Digital Twins and Automated Testing.

Workflow Introductions

Hardware-in-the-Loop

Industry Use Cases

Rapid Control Prototyping

Rapid Control Prototyping

Accelerate Control Design Innovation With Model-Based Design Ready Solutions for a Worry-Free Test and Simulation Experience.

Workflow Introductions

Rapid Control Prototyping

Industry Use Cases

Academia Solutions

Academia Solutions

Propel your research projects with real-time simulations and discover new ways on how to adapt concepts like Rapid Control Prototyping (RCP) and Hardware-in-the-Loop (HIL) simulations in your laboratory and classroom.

Industry Use Cases

Hardware-in-the-Loop

Rapid Control Prototyping

Classroom & Lab Solutions

Classroom & Lab Solutions

Real-time simulation in the classroom is a new way to inspire students and pivotal in shaping future engineers. Speedgoat's generous academic discount pricing, help academic institutions profit from our real-time solutions.

Hardware-in-the-Loop

Rapid Control Prototyping

Industry Use Cases

Speedgoat Collaboration Programs

Speedgoat Collaboration Programs

Speedgoat supports students in science and engineering competitions across the globe, as well as professors and researchers throughout their projects, with curated training and consulting services.

Rapid Control Prototyping

Hardware-in-the-Loop

Industry Use Cases

Research Solutions

Research Solutions

Leading companies use Rapid Control Prototyping (RCP) and Hardware-in-the-Loop (HIL) for faster product development. The flexible and scalable real-time simulation solutions enable you to make your research project successful.

Hardware-in-the-Loop

Rapid Control Prototyping

Industry Use Cases

Designing a Generic, Software-Defined Multimode Radar Simulator For FPGAs Using Simulink HDL Coder and Speedgoat Real-Time Hardware

Designing a Generic, Software-Defined Multimode Radar Simulator For FPGAs Using Simulink HDL Coder and Speedgoat Real-Time Hardware

This publication focuses on the implementation and testing of a fully-parameterized radar signal processing prototype. A Speedgoat Performance machine with two Simulink-Programmable FPGA I/O modules IO342 are used for the implementation of a radar signal processing design containing several common waveforms and tunable parameters and a radar scene generator for delay, doppler, and amplitude measurement.This setup helped increase the simulation fidelity while reducing the time to test.

Published Papers

Innovate and Teach Real-Time Control Designs in Academia

Innovate and Teach Real-Time Control Designs in Academia

This recorded webinar shows how to simulate and real-time execute Simulink-based control designs and plant simulations with the click on a button, connected to your hardware under control

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

Automated and Continuous Hardware-in-the-Loop Testing

Automated and Continuous Hardware-in-the-Loop Testing

Learn about hardware-in-the-loop (HIL) testing and how to efficiently test controls using Speedgoat and MathWorks’ unified HIL solution.

Recorded Webinars

Hardware-in-the-Loop

Design, Simulation and Hardware-in-the-Loop (HIL) Testing of an Electric Scooter Powertrain

Design, Simulation and Hardware-in-the-Loop (HIL) Testing of an Electric Scooter Powertrain

This publication focuses on an algorithm to control a brushless DC motor. A Speedgoat performance machine runs a digital twin of the motor on both the CPU and the FPGA-based I/O module IO334 and is connected via the analog channels to the controller, an MCU by Texas Instruments. With this HIL setup, the performance of the control algorithm was tested. 

Published Papers

Hardware-in-the-Loop

Computer Vision

Computer Vision

Rapidly build, run, and test video acquisition and control applications with a Speedgoat real-time target machine. There is a wide range of applications from the design of phone cameras to autonomous vehicle systems.

Rapid Control Prototyping

Hardware-in-the-Loop

Industry Use Cases

Audio

Audio

Highly controlled manipulations are required e.g. for hearing aids, noise cancelling headphones, or car acoustics. Speedgoat real-time systems provide high performance, high-resolution analog and digital I/O, together with MATLAB & Simulink.

Rapid Control Prototyping

Hardware-in-the-Loop

Industry Use Cases

Embedded

Embedded

Leverage real-time target machines for use as embedded controllers.

Rapid Control Prototyping

Industry Use Cases

Real-Time Simulation and Testing for Academic Research and Teaching

Real-Time Simulation and Testing for Academic Research and Teaching

Researchers and scientists accelerate the designing process of novel control strategies, verify and validate existing embedded controllers or expand real-world systems with emulated digital twins. This webinar takes you one step further and shows how to close the gap between desktop simulation and controlling actual hardware.

Rapid Control Prototyping

Hardware-in-the-Loop

Recorded Webinars

 Rapid Control Prototyping for Power Electronics Control Design

Rapid Control Prototyping for Power Electronics Control Design

This recorded webinar shows how power electronics control engineers can use rapid control prototyping (RCP) with Simulink Real-Time™ and Speedgoat real-time target machines to validate Simulink® algorithms against electric motor and power converter prototype systems.

Recorded Webinars

Rapid Control Prototyping

Developing and Testing Next Generation Control Systems

Developing and Testing Next Generation Control Systems

Learn how Speedgoat enables you to prototype and test complex control algorithms using full-vehicle simulation. By building a virtual environment for safe and realistic testing and verification, you can reduce prototype testing costs.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

Real-Time Simulation and Testing: Hardware-in-the-Loop

Real-Time Simulation and Testing: Hardware-in-the-Loop

Hardware-in-the-Loop (HIL) Simulation and Testing with Simulink Real-TimeTM and Speedgoat target computers.

Recorded Webinars

Hardware-in-the-Loop

CPU, FPGA, and I/O Solutions for Real-Time Simulation and Testing with Simulink

CPU, FPGA, and I/O Solutions for Real-Time Simulation and Testing with Simulink

In this webinar, MathWorks together with Speedgoat will showcase how to perform real-time simulation and testing, enabling you to rapidly and continuously test and prove your designs, from desktop simulation to testing your designs in real time on hardware platforms.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

A Self-Tuning Robust Control System for Nonlinear Simulation

A Self-Tuning Robust Control System for Nonlinear Simulation

A transfer system is used to enforce the interface interaction between computational and physical substructures in a real-time hybrid simulation. A model-based, multilayer nonlinear control system is developed to accommodate extensive performance variations and uncertainties in a physical substructure. This work aims to extend the application of real-time simulation to investigating failure, nonlinearity, and nonstationary behavior. 

Publication on wiley.com

Published Papers

Verification of a Geographically Distributed Real-Time Hybrid Simulation Platform

Verification of a Geographically Distributed Real-Time Hybrid Simulation Platform

This study presents a distributed real-time hybrid simulation (dRTHS) platform that enables the integration of geographically distributed physical and numerical components across the Internet. A series of numerical and experimental studies is evaluated, and it is demonstrated that dRTHS is feasible for coupling laboratory capabilities and is a viable alternative to traditional testing techniques.

Publication on wiley.com

Published Papers

Topological Analog Signal Processing

Topological Analog Signal Processing

Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) used a Speedgoat Performance real-time target machine and a high-speed analog IO131 module to validate an acoustic topological equation solver experimentally. The setup allowed them to demonstrate the robustness of analog signal processors (ASP) and is an essential step towards a new generation of ultrafast all-optical ASPs. 

Publication on nature.com

Published Papers

Rapid Control Prototyping

Robust Switching Control Method to Achieve Tokamak-Shaped Plasma

Robust Switching Control Method to Achieve Tokamak-Shaped Plasma

A robust switching control method with state vector matching and a novel approach for the feedback system simulation are presented in this paper. First, the plant model reconstructs plasma equilibria from experimental data and calculates plasma shape changes. Then, the control system is discretized and run on a high-speed computer for experiments on a real-time testbed.

Publication on sciencedirect.com

Published Papers

Rapid Control Prototyping

Robust switching control in the Feedback for Tokamak Plasma Shape

Robust switching control in the Feedback for Tokamak Plasma Shape

A hierarchical robust switching control method with state vector matching is proposed. The plasma shape is controlled via a magnetic field at X-point and poloidal fluxes on the plasma separatrix. Using a combination of advanced reconstruction code with isoflux control leads to high performance.

Publication on sciencedirect.com

Published Papers

Hands-On in Signal Processing Education at Technische Universität Darmstadt

Hands-On in Signal Processing Education at Technische Universität Darmstadt

This paper shares the experiences gained by conducting hands-on learning in signal processing as part of the engineering program at Technische Universität Darmstadt. It describes the variety of laboratories, projects, lectures, and seminars offered to expose students to state-of-the-art research and advanced equipment.

Publication on ieeexplore.ieee.org

Published Papers

Follow Speedgoat LinkedIn