Usage of grid-side converters (GSC) has increased with the electrification trend. GSCs are used to interface an AC grid with a DC network. Typical applications are wind and solar power generation, grid-connected electric vehicles, or motor control regenerative drives. GSCs usually combine multiples algorithms such as phase-locked-loop (PLL), cascaded controllers, and pulse-width-modulation (PWM). This complexity can make controllers challenging to test and troubleshoot.
Furthermore, some GSCs need to perform in scenarios such as weak grid conditions, grid harmonics, grid faults, grid outage, and islanding. Such scenarios are difficult and costly to test with a traditional test bench. Hardware-in-the-loop (HIL) testing can speed up and automate the testing process. Compliance with grid code and regulations requires running different operational tests to ensure the safety of the power converter's integration in the grid, for example, to ensure fault ride through.